Genome evolution in Oryza allopolyploids of various ages: Insights into the process of diploidization

2021-07-22

作  者:Zou XH, Du YS, Wang X, Wang Q, Zhang B, Chen JF, Chen MS, Doyle JJ, Ge S*
影响因子:6.141
刊物名称:Plant Journal
出版年份:2020
卷:  期:  页码:DOI: 10.1111/tpj.15066
论文摘要:
The prevalence and recurrence of whole‐genome duplication in plants and its major role in evolution have been well recognized. Despite great efforts, many aspects of genome evolution, particularly the temporal progression of genomic responses to allopolyploidy and the underlying mechanisms, remain poorly understood. The rice genus Oryza consists of both recently formed and older allopolyploid species, representing an attractive system for studying the genome evolution after allopolyploidy. In this study, through screening BAC libraries and sequencing and annotating the targeted BAC clones, we generated orthologous genomic sequences surrounding the DEP1 locus, a major grain yield QTL in cultivated rice, from four Oryza polyploids of various ages and their likely diploid genome donors or close relatives. Based on sequenced DEP1 region and published data from three other genomic regions, we investigated the temporal evolutionary dynamics of four polyploid genomes at both genetic and expression levels. In the recently formed BBCC polyploid, Oryza minuta, genome dominance was not observed and its short‐term responses to allopolyploidy are mainly manifested as a high proportion of homoeologous gene pairs showing unequal expression. This could partly be explained by parental legacy, rewiring of divergent regulatory networks and epigenetic modulation. Moreover, we detected an ongoing diploidization process in this genus, and suggest that the expression divergence driven by changes of selective constraint probably plays a big role in the long‐term diploidization. These findings add novel insights into our understanding of genome evolution after allopolyploidy, and could facilitate crop improvements through hybridization and polyploidization.
全文链接:https://onlinelibrary.wiley.com/doi/10.1111/tpj.15066 

附件下载:

位于北京西部香山脚下的中国科学院植物研究所是我国系统与进化生物学领域的第一个国家重点实验室

版权所有 © 系统与进化植物学国家重点实验室[中国科学院植物研究所]
ICP备16067583号-12 网站管理 技术支持:青云软件

联系我们

  • 地址:北京市海淀区 香山南辛村20号
  • 邮编:100093
  • 电话:010-6283 6086
  • 传真:010-6283 6095
  • 电邮:lseb@ibcas.ac.cn

语言切换