最新成果

Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change


2017-03-20

作 者:Xu Q, Song ZH, Zhu CY, Tao CC, Kang LF, Liu W, He F, Yan J, Sang T*

影响因子: 3.631

刊物名称: BMC Plant Biology

出版年份: 2017

卷: 17 期: 1 页码: 42

文章摘要 :

Background

Long non-coding RNA (lncRNA) is a class of non-coding RNA with important regulatory roles in biological process of organisms. The systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change are still poorly understood. Here we identified 17,610 lncRNAs and calculated their expression levels based on RNA-seq of 80 individuals of Miscanthus lutarioriparius from two environments, the nearly native habitats and transplanted field, respectively.

Results

LncRNAs had significantly higher expression diversity and lower expression frequency in population than protein coding mRNAs in both environments, which suggested that lncRNAs may experience more relaxed selection or divergent evolution in population compared with protein coding RNAs. In addition, the increase of expression diversity for lncRNAs was always significantly higher and the magnitude of fold change of expression in new stress environment was significantly larger than protein-coding mRNAs. These results suggested that lncRNAs may be more sensitive to environmental change than protein-coding mRNAs. Analysis of environment-robust and environment-specific lncRNA-mRNA co-expression network between two environments revealed the characterization of lncRNAs in response to environmental change. Furthermore, candidate lncRNAs contributing to water use efficiency (WUE) identified based on the WUE-lncRNA-mRNA co-expression network suggested the roles of lncRNAs in response to environmental change.

Conclusion

Our study provided a comprehensive understanding of expression characterization of lncRNAs in population for M. lutarioriparius under field condition, which would be useful to explore the roles of lncRNAs and could accelerate the process of adaptation in new environment for many plants.

全文链接